A One-Layer Recurrent Neural Network for Non-smooth Convex Optimization Subject to Linear Equality Constraints

نویسندگان

  • Qingshan Liu
  • Jun Wang
چکیده

In this paper, a one-layer recurrent neural network is proposed for solving non-smooth convex optimization problems with linear equality constraints. Comparing with the existing neural networks, the proposed neural network has simpler architecture and the number of neurons is the same as that of decision variables in the optimization problems. The global convergence of the neural network can be guaranteed if the non-smooth objective function is convex. Simulation results are provided to show that the state trajectories of the neural network can converge to the optimal solutions of the non-smooth convex optimization problems and show the performance of the proposed neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

A Recurrent Neural Network for Non-smooth Convex Programming Subject to Linear Equality and Bound Constraints

In this paper, a recurrent neural network model is proposed for solving non-smooth convex programming problems, which is a natural extension of the previous neural networks. By using the non-smooth analysis and the theory of differential inclusions, the global convergence of the equilibrium is analyzed and proved. One simulation example shows the convergence of the presented neural network.

متن کامل

Briefs SocietySociety Neural Networks

Many real world problems can be formulated as optimization problems with various parameters to be optimized. Some problems only have one objective to be optimized, some may have multiple objectives to be optimized at the same time and some need to be optimized subjecting to one or more constraints. Thus numerous optimization algorithms have been proposed to solve these problems. Particle Swarm ...

متن کامل

A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization

In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. M...

متن کامل

Maximisation of stability ranges for recurrent neural networks subject to on-line adaptation

We present conditions for absolute stability of recurrent neural networks with time-varying weights based on the Popov theorem from non-linear feedback system theory. We show how to maximise the stability bounds by deriving a convex optimisation problem subject to linear matrix inequality constraints, which can efficiently be solved by interior point methods with standard software.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008